	Case 4:01-cv-01351-JST Document 339	1 Filed 07/15/20 Page 1 of 5	
1 2 3 4 5 6 7	PRISON LAW OFFICE DONALD SPECTER (83925) STEVEN FAMA (99641) ALISON HARDY (135966) SARA NORMAN (189536) RANA ANABTAWI (267073) SOPHIE HART (321663) 1917 Fifth Street Berkeley, California 94710 Telephone: (510) 280-2621 Fax: (510) 280-2704 <u>dspecter@prisonlaw.com</u> Attorneys for Plaintiffs		
8			
9		S DISTRICT COURT	
10		ANCISCO	
11			
12	MARCIANO PLATA, et al.,	Case No. C01-1351 JST	
13	Plaintiffs, v.	PLAINTIFFS' BRIEF IN SUPPORT	
14	GAVIN NEWSOM., et al.,	OF PROPOSED ORDER ON ISOLATION AND QUARANTINE	
15	Defendants.	SPACE	
16			
17	In its July 7, 2020, Order Re: Isolati	on and Quarantine Space, the Court	
18	announced its intention to issue an order re-	quiring Defendants to set aside sufficient	
19	space "to allow [each] institution to follow public health guidance on isolating and		
20	quarantining patients in the event of a COV	ID-19 outbreak." ECF No. 3381 at 1. The	
21	Court ordered the parties and the Receiver to meet and confer about the elements of any		
22	such order. Id. As stated previously, see E	CF No. 3385, the parties have met with the	
23	Receiver and each other to discuss the meth	nodology for determining the need and	
24	location for the necessary space in the even	t of an outbreak. As a result of those meetings	
25		1	
26		PLATA V. NEWSOM, NO. C01-1351 JST	

and his own analysis, the Receiver issued a document entitled "COVID-19 Space Needs
 for Prevention, Isolation and Quarantine." A copy of this document is attached to the
 Declaration of Adam Lauring, filed herewith (Lauring Decl.), as Exhibit C (Receiver's
 Guidance).

The parties have met and conferred over a proposed order, as directed by the
Court, but have been unable to come to an agreement. Accordingly, Plaintiffs hereby
submit the attached proposed order for the Court's consideration.

8

25

26

A.

Receiver's Guidance

The Receiver's "summary of principles and strategies" carefully defines the 10 people who must be placed in medical isolation or quarantine in order to prevent isolated 11 occurrences of the disease from becoming significant outbreaks. The document also 12 delineates the separation requirements for those groups. These definitions and separation 13 requirements are well grounded in scientific consensus. Lauring Decl., ¶ 10. 14 15 The document then sets forth the space requirements to allow for effective 16 implementation of medical isolation and quarantine in an outbreak: 17 each facility in each prison shall identify space that will allow for rapid isolation and quarantine of impacted patients. Each facility shall identify its 18 largest congregate living space. Each facility shall maintain empty beds equivalent to the capacity of its largest congregate living space or 20% of 19 the current population of the facility, whichever is larger. 20 Receiver's Guidance at 3. The Receiver noted during the meet and confer sessions that 21 there is no body of scientifically validated evidence that could be used to develop a 22 formula for the amount of space in a correctional institution necessary to minimize the 23

24 risk of an outbreak. As the Receiver explained in his statement:

The methodology for determining the number of empty beds, including the 20% adjustment noted at the end of this document, was based upon our experience during the pandemic with outbreaks of different sizes. We have experienced four large outbreaks (total positives greater than 500), six medium-sized outbreaks (total positives greater than 100 and less than 500), and fourteen small outbreaks (total positives between 1 and 99). The goal of this analysis and its associated methodology is to ensure to the extent reasonably feasible that each institution has enough beds to handle the beginning phases of an outbreak in order to significantly reduce the risk of it blossoming into a medium-sized or large outbreak.

7 Receiver's Guidance at 1.

1

2

3

4

5

6

25

26

8 The strategy outlined by the Receiver is consistent with the advice provided to the 9 Court by AMEND and the Berkeley School of Public Health in their "Urgent Memo" of 10 June 13, 2020, regarding the COVID-19 outbreak at San Quentin State Prison. This 11 document, authored by an eminent group that includes two members of the Court's 12 Advisory Board, found that "a massive outbreak at San Quentin will significantly 13 overwhelm the availability of [San Quentin's limited] Medical Isolation cells, and there 14 will quickly be nowhere for infectious cases to be moved." Lauring Decl., Exh. C, at 5. 15 The memo recommends taking drastic measures to create medical isolation space and 16 develop alternate quarantine sites in order to meet the anticipated need for empty beds to 17 perform the essential action of separating the sick patients from the healthy ones. Id. 18 The Receiver's strategies, building on the experience gained at tragic cost from the San 19 Quentin outbreak, seek to establish that isolation and quarantine space in advance, in 20 21 every prison, in order to prevent further unacceptable loss of life. 22 In addition, Dr. Adam Lauring, a noted expert in infectious disease and COVID-23 19 prevention, agrees with the Receiver's approach and adds that the lack of current

- 24 scientific consensus should not prevent action based on the experience to date with the
 - 3

1 virus in the CDCR. Lauring Decl., ¶¶ 7-9.

2	The Receiver's approach, grounded in his own experience and consistent with the		
3	opinions of national experts, represents the best thinking available on this matter. It		
4	strikes a balance between two important considerations: on one hand, the urgent need to		
5	prevent further disastrous outbreaks and reduce the current, unacceptable risk of harm to		
6	all people housed in CDCR institutions, and on the other hand, the need to ground any		
7	remedial actions in experience, careful analysis, and expert advice.		
8	B. Plaintiffs' proposed order		
9 10	Plaintiffs have incorporated the Receiver's analysis and proposed methodology		
10	into their proposed order. The order requires Defendants to speedily implement the		
12	Receiver's strategies in order to reduce the unacceptable risk of harm inherent in current		
13	conditions. Plaintiff class members in prisons throughout the state live in fear of an		
14	outbreak. Too often those fears have been realized, with deadly cost: the COVID-19		
15	mortality rate at San Quentin, at approximately 300 per 100,000, is nearly 17 times the		
16	COVID-19 mortality rate in the state as a whole. ¹ The uncontested expert opinions		
17	before the Court warn that the lack of space for medical isolation and quarantine will		
18	result in serious illness and many additional deaths unless the Court requires Defendants		
19	to act.		
20	Plaintiffs' proposed order includes a provision, however, that allows for		
21			
22	¹ See https://www.cdc.gov/covid-data-tracker/index.html#cases (last viewed July 15, 2020) (California mortality rate is 17.8 per 100,000); https://www.cdcr.ca.gov/covid19/		
23	population-status-tracking/ (last viewed July 15, 2020) (10 COVID-19 deaths at San Quentin); https://www.cdcr.ca.gov/research/population-reports-2/ (last viewed July 15,		
24 25	2020) (as of July 8, San Quentin population was 3,392). The COVID-19 mortality rate at San Quentin is thus 295 per 100,000.		
25 26	PLATA V. NEWSOM, NO. C01-1351 JST		
20			

1	adjustment based on factors identified by Defendants during the meet and confer process,		
2	such as alternative housing that might be available at the facility, the physical structure of		
3	the prison, characteristics of the population at the prison and transfers to other prisons		
4	once a transfer protocol is approved. It also allows for adjustments based on the		
5	necessity to accessibly house plaintiff class members with disabilities and other factors		
6	that limit housing flexibility. It therefore allows for – requires – narrow tailoring to meet		
7	the needs and limitations of the individual prisons.		
8 9	Plaintiffs respectfully request that the Court issue the attached order.		
10			
11	Respectfully submitted,		
12			
13	DATED: July 15, 2020 PRISON LAW OFFICE		
14	By: Sara Norman		
15	Donald Specter Steven Fama		
16	Alison Hardy Sara Norman Dana Anaktawi		
17	Rana Anabtawi Sophie Hart		
18 19	Attorneys for Plaintiffs		
19 20			
21			
22			
23			
24			
25	5		
26	Plata v. Newsom, No. C01-1351 JST		

	Case 4:01-cv-01351-JST	Document 3391-1	Filed 07/15/20	Page 1 of 35
1 2 3 4 5 6 7	PRISON LAW OFFICE DONALD SPECTER (8 STEVEN FAMA (99641 ALISON HARDY (1359 SARA NORMAN (1895 RANA ANABTAWI (26 SOPHIE HART (321663 1917 Fifth Street Berkeley, California 947 Telephone: (510) 280-20 Fax: (510) 280-2704 <u>dspecter@prisonlaw.con</u> Attorneys for Plaintiffs	1) 966) 536) 57073) 3)		
8	U	NITED STATES D	ISTRICT COU	RT
9		RTHERN DISTRIC		
10		SAN FRAN	NCISCO	
11	MARCIANO PLATA, et	a1		
12	Plaintiffs,	al.,	Case No. C01-1	351 JST
13	V.			ON OF ADAM
14	GAVIN NEWSOM., et al	l.,	LAURING, M OF PLAINTIF ORDER	D, PhD, IN SUPPORT FS' PROPOSED
15	Defendants.		ORDER	
16				
17				
18				
19				
20				
21				
22				
23				
24				
25		1	DECLARATION	DF ADAM LAURING, M.D., PH.D.
26				Case No. C01-1351 JST

1

DECLARATION OF ADAM LAURING, M.D, Ph.D.

I, Adam Lauring, declare as follows:

2

3 1. I am a physician and Associate Professor in the Division of Infectious 4 Diseases and the Department of Microbiology and Immunology at the University of 5 Michigan. I am board certified in infectious diseases and have a PhD in Molecular and 6 Cellular Biology. In 2019, I became a Fellow of the Infectious Diseases Society of America, an honor given to individuals who have demonstrated excellence in the field. 7 In 2020, I was elected to the Governing Council of the American Society for Virology. 8 Attached as Exhibit A is a copy of my curriculum vitae. Further biographical details and 9 qualifications are available at https://medicine.umich.edu/dept/ microbiology-10 immunology/adam-lauring-md-phd.

11

2. I specialize in molecular virology and have published extensively on virus 12 transmission and spread. In particular, I study how viruses evolve and spread with a 13 focus on influenza and other respiratory viruses. I am the Principal Investigator on a 5year, \$3.7 million NIH grant on respiratory virus transmission. I have cared for COVID-14 19 patients and was instrumental in developing and implementing many aspects of the 15 University of Michigan's epidemic response: I developed our diagnostic and testing 16 guidelines, contributed to institutional treatment guidelines, and worked closely with 17 hospital infection control to manage patient flow over the first two weeks of the Michigan 18 epidemic. I also helped to set up our Regional Infection Containment Unit, a dedicated 19 COVID-19 intensive care unit.

20

3. I am familiar with the scientific literature on the transmission, treatment, and prevention of COVID-19, and I am in frequent contact with experts in the field 21 around the country and the world. 22

4. I am also familiar with a growing body of scientific literature detailing the 23 particular risks and dangers that COVID-19 presents in correctional settings. I have 24 reviewed the "Urgent Memo" on the COVID-19 outbreak at San Quentin State Prison

2

DECLARATION OF ADAM LAURING, M.D., PH.D. CASE NO. C01-1351 JST

26

25

from AMEND and the Berkeley School of Public Health, dated June 13, 2020, and
attached as Exhibit B. I also note a recent article in the Journal of the American Medical
Association finds that "COVID-19 case rates have been substantially higher and
escalating much more rapidly in prisons than in the US population," including the finding
that people in prison are three times more likely to die and 5.5 times more likely to
become infected by the virus. See https://jamanetwork.com/journals/ jama/fullarticle
/2768249.

- 7 5. Medical isolation and quarantine of known and suspected cases of the virus 8 are absolutely essential tools to prevent massive outbreaks, particularly in confined and 9 congregate care settings such as prisons, where people are indoors nearly all the time and do not have the freedom of movement to practice physical distancing in the way that 10 most of us can accomplish. People with confirmed cases or who have symptoms of the 11 virus must be separated from those in quarantine as suspected cases, and both groups 12 must be separated from people who are asymptomatic and not suspected of infection. 13 Without adequate space to accomplish this separation, minor outbreaks can quickly flare 14 up to a disastrous level, such as we have witnessed at San Quentin.
- 15 6. I have carefully reviewed the document entitled "COVID-19 Space Needs for Prevention, Isolation and Quarantine," dated July 11, 2020, and provided to me in its 16 most recent form on July 14 from Plaintiffs' counsel (attached as Exhibit C). Generally 17 speaking, I find this document sets forth a sound strategy on medical isolation and 18 quarantine, and one that comports with the scientific data and literature on prevention of 19 transmission of COVID-19 as well as the experience of COVID-19 in correctional 20 settings. I agree wholeheartedly with the "fundamental underlying tenet of this proposal" 21 that "each institution must have adequate space to allow for the housing, feeding, and 22 programing of all inmates under its care," and that adequate space must include vacant beds to allow for speedy activation of living spaces for medical isolation and quarantine, 23 separated from non-infected patients and from each other. 24
- 26

25

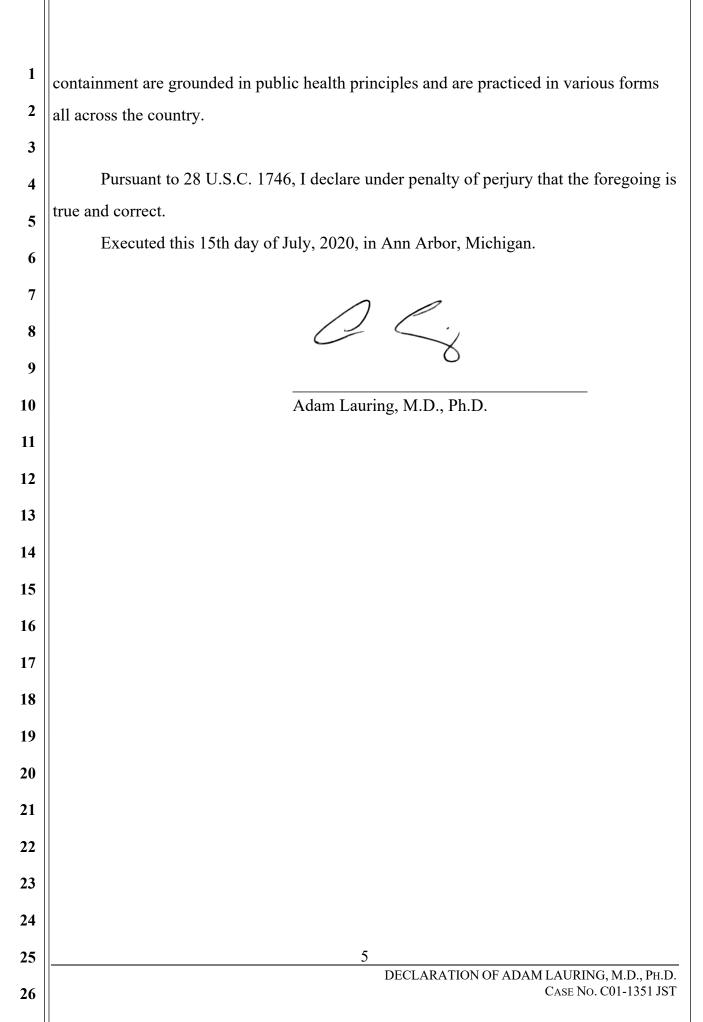
- 1 7. The Receiver's strategy as set forth in this document is to set aside 20% of 2 the beds on each prison facility (or, if larger, the number of beds in the largest living unit) so that they will be readily available for quarantine and medical isolation purposes. 3 There is no current consensus among the scientific community about how to determine 4 exactly how much space is enough in a correctional institution for this purpose; we are 5 simply too early in our experience of COVID-19 to make such precise determinations 6 and predictions. However, the lack of consensus should not prevent action from being 7 taken based on the best estimates from recent experience. I note that the recommendation 8 in the AMEND memo was to reduce San Quentin's population by 50%; my 9 understanding is that this was not done, and there has subsequently been a massive outbreak and significant morbidity and mortality at the institution. 10
- 11

12

13

8. My opinion as to how to make these determinations in the correctional environment comports with the Receiver's actions: carefully review the outbreaks already experienced to determine what space, if available in the early stages, would have provided a significant reduction in the risk of spread of the disease throughout the prison.

- 14 9. The Receiver's approach is sensible and his resulting strategy sound. A 15 set-aside of 20% of beds will give prison officials significant room to work and provides 16 an essential tool in stemming major outbreaks, based on all the data currently available. I see no other reasonable alternative at this point. Further, I cannot stress strongly enough 17 the critical nature of speedy action. Without adequate space at their disposal to medically 18 isolate and quarantine patients, prison officials will lack an essential, proven tool to fight 19 a major outbreak, and the result could well be deadly. The fact that no one can precisely 20 predict the exact quantity of space needed at this time should not prevent speedy action to 21 ensure that this life-saving tool is used by prison officials. The Receiver's approach is a 22 reasonable one and I endorse it.
- 23


24

I also endorse the other principles and strategies outlined by the Receiver. 10. The guidance that he has provided about isolation, quarantine, prevention and

4

26

25

Case 4:01-cv-01351-JST Document 3391-1 Filed 07/15/20 Page 6 of 35

EXHIBIT A

Adam Scott Lauring, MD, PhD

Associate Professor Division of Infectious Diseases, Department of Internal Medicine Department of Microbiology and Immunology Department of Ecology and Evolutionary Biology

> 5510B MSRBI, SPC 5680 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5680 (734) 764-7731 alauring@med.umich.edu

Education and Training:

1990-1994	Yale University	B.S.
1994-2000	University of Washington	Ph.D., Molecular Biology
1994-2002	University of Washington	M.D.
2002-2004	University of California, San Francisco	Resident, Medicine
2004-2008	University of California, San Francisco	Fellow, Infectious Diseases
2007-2009	University of California, San Francisco	Postdoctoral, Virology

Certification and Licensure:

2003	Medical License, Medical Board of California
2005	Internal Medicine, American Board of Internal Medicine
2007	Infectious Diseases, American Board of Internal Medicine
2012	Medical License, State of Michigan

Appointments:

<u>Academic</u> 2005-2006 2006 2008-2009 2009-2012 2012-2018 2018-	Chief Medical Resident, Department of Medicine, UCSF Visiting Scholar, Department of Chemistry, UC-Berkeley Clinical Instructor, Division of Infectious Diseases, UCSF Assistant Adjunct Professor, Division of Infectious Diseases, UCSF Assistant Professor, University of Michigan Associate Professor with Tenure, University of Michigan
<u>Clinical</u> 2004-2006 2006-2008 2008-2012	Staff Physician, Marin County General Hospital, CA Staff Physician, Mount Zion Hospital at UCSF Staff Physician, Alta Bates Summit Medical Center, Berkeley, CA

Research Interests:

- 1. Molecular Virology
- 2. Microbial Pathogenesis
- 3. Population Genetics and Evolution
- 4. Human Genetics of Infectious Diseases

Grant Support:

Current Grants

Contract 75D30120C07963 Development of a Multi-level Integrated Strategy for Regional Evaluation of Influenza Viruses and Vaccines CDCP-DHHS-US- Co-I with Effort (Principal Investigator: Martin, Emily) 05/2020-04/2022

The Evolution of Pathogen Virulence and Transmissibility Burroughs Wellcome Fund- Lauring, Adam, PI 07/2017-06/2022

5 R01 AI118886: Fidelity, robustness, and diversity in RNA virus evolution and pathogenesis NIH-DHHS-US- Lauring, Adam, PI 01/2016-01/2021

1 R21AI141832: Mutation rates and transmission dynamics of influenza B viruses NIH-DHHS-US- Lauring, Adam, PI 02/2019-01/2021

U01 IP 000974: US Hospital Vaccine Effectiveness (VE) Network CDCP-DHHS-US- Co-I with Effort (Principal Investigator: Monto, Arnold and Martin, Emily) 08/2015-07/2020

U01 IP001034: US Influenza Vaccine Effectiveness (VE) Network CDCP-DHHS-US- Co-I with Effort (Principal Investigator: Monto, Arnold and Martin, Emily) 08/2016-07/2021

NIH CEIRS Program Option: Evaluating the effect of repeated influenza vaccination NIH-DHHS-US- Co-I with Effort (Principal Investigator: Monto, Arnold and Martin, Emily) 08/2018-08/2020

5 T32 AI007528: Molecular Mechanisms of Microbial Pathogenesis Training Program NIH-DHHS-US- Co-I without Effort (Principal Investigator: Carruthers, Vernon Bruce) 08/2014-07/2019, renewal pending

Sequencing of SARS-CoV-2 to Define Transmission and Spread UM COVID-19 Response Innovation Grant - Lauring, Adam PI without effort 04/2020-07/2022 <u>Pending Grants</u> 1 R01 AI148371: Evolution and Transmission of Influenza Virus in Natural Human Infection NIH-DHHS-US- Lauring, Adam, MPI (with Emily Martin) 07/2020-06/2025 Impact 14, Percentile 1

Past Grants

Poliovirus sequencing from the Matlab study The Bill and Melinda Gates Foundation- Lauring, Adam Co-PI (with Famulare and Taniuchi) 08/2018-02/2020 (NCE)

Influenza Vaccine Response and Transmission Risk MCubed Award – Lauring, Adam Co-PI without effort (with Zelner and Petrie) 01/2018-12/2019

Multiscale Investigation of Influenza Transmission and Vaccine Failure MICHR Accelerating Synergy Award – Lauring, Adam Co-PI 07/2018-06/2019

2 R56 AI097150-05: Household Studies of Influenza and Other Respiratory Viruses NIH-DHHS-US- Co-I with Effort (Principal Investigator: Monto, Arnold S;Gordon, Aubree) 08/2016-07/2017

Influenza Transmission in a Vaccinated Cohort University of Michigan Discovery Grant - Lauring, Adam PI 05/2015-04/2017

5U01 P000474: Core Plus A-B Option Influenza Vaccine Effectiveness CDC Co-I with Effort (Principal Investigator: Monto, Arnold) 07/2014-06/2016

Viral determinants of influenza vaccine failure Infectious Diseases Society of America- Lauring, Adam, PI 11/2013-10/2015

Viral mutant networks and effective influenza control Doris Duke Charitable Foundation- Lauring, Adam, PI 07/2013-06/2016

Genomewide Dissection of Host Factors in HAV Associated Liver Failure UCSF Liver Center- Lauring, Adam PI 04/2011-03/2012

7 K08 AI081754: Population Dynamics and Evolutionary Capacity of Viral Quasispecies NIH-DHHS-US- Lauring, Adam, PI 03/2009-08/2013 *Evolvability in Enteroviruses – Implications for Therapy and Vaccines* American Heart Association- Lauring, Adam PI 07/2008-02/2009

Honors and Awards

1993-1994	Mellon Undergraduate Research Fellowship
1994	Distinctive Honors in Biology and in History of Science
1994	Magna Cum Laude, Yale University
1994	Phi Beta Kappa, Yale University
1997-1999	Poncin Graduate Fellowship
2000-2002	Achievement Rewards for College Scientists (ARCS) Fellowship
2000-2002	Paul Allen Foundation Fellowship
2002	Medical Doctor, with Honors, University of Washington
2006	Alpha Omega Alpha, University of California, San Francisco
2006-2008	UCSF Molecular Medicine Fellow
2012	University of Michigan Biological Sciences Scholars Program
2013	Doris Duke Charitable Found. Clinician Scientist Development Award
2013	Pfizer Young Investigator Award in Vaccine Development
2017	Burroughs Wellcome Fund Investigator in the Pathogenesis of Inf. Disease
2019	Fellow of the Infectious Diseases Society of America
2020	Department of Internal Medicine Chair's Impact Award

Membership in Professional Societies:

2005-2007	Infectious Diseases Society of America, Member-in-Training
2010-2011	American Society for Human Genetics, Member
2011-	American Society for Virology, Member
2011-	Infectious Disease Society of America, Member
2011-2013	International Encephalitis Consortium, Member
2012-	American Society for Microbiology, Member

Editorial and Peer Review Service:

2011-	Ad hoc reviewer Journal of Virology; PLoS One; PLoS Pathogens; PLoS Genetics; Molecular Biology and Evolution; eLife; PLoS Biology; Nature Communications; Virus Evolution; Scientific Reports; PNAS; Virology; mSphere; mBio; Philosophical Transactions Royal Society B; Evolutionary Applications; Nature Ecology and Evolution; Trends in Microbiology; Vaccine; Viruses; Science; Genetics; Journal of Medical Virology; Cell Host and Microbe; Nature Microbiology; JAMA
2014-2020	Associate Editor, PLoS Pathogens
2020-	Section Editor, PLoS Pathogens

Teaching:

Graduate Students	
2013-2016	Matthew Pauly, PIBS Microbiology and Immunology
	Current, Staff Scientist, CDC Division of Viral Hepatitis
2014-2018	John T. McCrone, PIBS Microbiology and Immunology
	Current, Postdoctoral Fellow, University of Edinburgh
2016-2020	Daniel Lyons, MSTP and Ecology and Evolutionary Biology
2018-	Andrew Valesano, MSTP and Cell and Molecular Biology
2019-	Yuan Li, PIBS Microbiology and Immunology
Advanced Fellow/Fa	aculty Mentees
2014-2016	Robert Woods, MD, PhD
	Current, Assistant Professor, University of Michigan
	Mentor on K08 AI119182
2018-	Joshua Petrie, PhD
	Current, Research Assistant Professor, University of Michigan
	Mentor on K01 AI141579
2019-	Daniel Schneider, MD, PhD
	Current, Assistant Professor, University of Michigan
	Member of K08 Mentoring Committee
Postdoctoral Fellow	<u>'S</u>
2014-2016	Daniel Jorge, PhD
2014-2016	Kari Debbink, PhD
	Current, Assistant Professor, Bowie State University
2016-2018	Kayla Peck, PhD
2020-	Emily Bendall, PhD
Other Trainees	
2010-2012	Dustin Long, UCSF Medical Student
2012-2014	Eric Hwu, UM Undergraduate
2012-2014	Shawn Whitefield, MPH Student
2013-2014	Mariessa Stademann, Visiting Graduate Student, University of Lubeck
2014-2016	Anna Berezovsky, UM Undergraduate
2015-2016	Emily Mantlo, UM Undergraduate
2018-2019	Candelaria de la Rosa, UM Undergraduate
2018-	Emma James, UM Undergraduate
2019-	Kalee Rumfelt, MPH Student

Preliminary Exam Committees

Alex Smith, PIBS Bioinformatics 2013 Ellyn Schinke, PIBS Microbiology 2014 Dishari Mukherjee, PIBS Microbiology 2014 Nicholas Lesniak, PIBS Microbiology 2016 Danelle Weakland, PIBS Microbiology 2016 Zena Lapp, PIBS Bioinformatics 2018 Amanda Photenhauer, PIBS Microbiology 2018

Dissertation Committees

Daniel Zinder, PIBS Bioinformatics, Defended 2015 (Mercedes Pascual) Brittany Agius Bailey, Pharmaceutical Sciences, Defended 2015 (Steven Schwenderman) Jay Lubow, PIBS Microbiology, Defended 2020 (Kathy Collins) Sukhmani Bedi, PIBS Microbiology and Immunology, Defended March 2019 (Akira Ono) Yinyin Ye, Environmental Engineering, Defended 2018 (Krista Wiggington) Michelle Fearon, Ecology and Evolutionary Biology (Elizabeth Tibbetts) Jillian Myers, Ecology and Evolutionary Biology (Tim James) Hannah Segaloff, Epidemiology, Defended March 2019 (Emily Martin) Qingxia Zhang, Ecole Polytechnique Federale de Lausanne, Defended 2017 (Tamar Kohn) John Kubale, Epidemiology (Emily Martin) Judy Chen, PIBS Immunology (Daniel Goldstein)

Classroom Teaching Activities

Clussroom Teaching Activities			
1994	Small Group Leader, AIDS Education in King County Public Schools		
1998	Teaching Assistant, Introduction to Biology, University of Washington		
1998-1999	Science Outreach, Vashon Island Public Schools		
2004-2006	Lecturer, MS3 Didactic Sessions		
2005-2006	Curriculum Development, Internal Medicine Residency		
2006	Lecturer, Internal Medicine Housestaff Conference		
2006	Presenter, Advances in Internal Medicine CME Course		
2006	Small Group Leader, CODA Clinical Skills Course		
2008-2010	Lecturer, Infectious Disease Fellows' Curriculum		
2008-2010	Small Group Leader, Advances in Medical Sciences Course		
2010	Small Group Leader, MS2 Micro and Infectious Disease Curriculum		
2013-	Lecturer, Infectious Disease Sequence (INF 500), 2-3 contact hours		
2014-	Lecturer, Viral Pathogenesis (Micro 615), 6 contact hours		
2014	Course Director, Experimental Genetic Systems (HG 632)		
2014	Guest Lecture, LSA Freshman Seminar (UC152)		
2015	Course Director, Viral Pathogenesis (Micro 615)		
2015-	Course Director, Science in the Clinics (Micro 813)		
2017	Guest Lecture, LSA Freshman Seminar (UC154)		
2017	Guest Lecture, Experimental Genetic Systems (HG 632)		
2018	Lecturer, Foundations of Immunology for MS1, 1 contact hour		
2018-2019	Small Group Leader, Research Responsibility and Ethics (PIBS 503)		

Clinical Teaching Activities

2005-2006	Small Group Leader, MS3 Bimonthly Physical Diagnosis Rounds
2005-2006	Small Group Leader, Residency Morning Report
2005-2006	Attending Physician, Internal Medicine Service, UCSF
2008-2011	Attending Physician, Infectious Diseases Consult Service, UCSF
2012-	Attending Physician, Infectious Diseases Consult Service, UM

Community Outreach

04/2014	Lecturer, University of Michigan "Mini Med School"
10/2014	Panelist, UM International Institute Forum "Beyond Ebola"
10/2015	Guest, "This Week in Virology, Episode 360" podcast
08/2019	Guest, "Curioscity, A Science Show, Episode 33" podcast
07/2020	Guest Speaker, miRCore Summer Science Camp for High School Students
07/2020	Guest Speaker, Aspirnaut Summer Science Internship Program

Committee, Organizational, and Grant Review Service:

2012	Chair, Host Genetics Subgroup, International Encephalitis Consortium
2013-2014	Graduate Studies, Department of Microbiology and Immunology
2014-	Faculty Search Committee, Division of Infectious Diseases
2014-	Assoc. Director, Molecular Mechanisms of Microbial Pathogenesis (T32)
2014	MICHR Pilot Grant Study Section, Round 17
2014-2015	Appointments, Promotions, Awards, Dept. Microbiology and Immunology
2015-2016	Graduate Studies, Department of Microbiology and Immunology
2016	Abstract Review, ASM Microbe
2016-2017	Grant Review, MICHR Postdoctoral Translational Scholars Program
2016	Ad hoc reviewer, National Science Foundation Career Awards
2016	Ad hoc reviewer, NIAID Special Emphasis Panel on Zika Virus
2016	Ad hoc reviewer, NIGMS K99/R00 Review Panel
2017	Grant Review, ETH Zurich Postdoctoral Fellowship Program
2017-	American Society for Virology Communications Committee
2018	Grant Review, Doris Duke Charitable Foundation CSDA
2018-	University of Michigan Institutional Biosafety Committee
2018	Grant Review, Sir Henry Wellcome Postdoctoral Fellowship Program
2019	Grant Review, Netherlands Organisation for Scientific Research
2019	Grant Review, Singapore Ministry of Health
2019-	UM Biological Sciences Scholars Program Search Committee
2019	Midwest Virology Symposium Scientific Program Committee
2019-	IDSA Research Committee
2020	Ad hoc reviewer, NIH Genetic Variation and Evolution (GVE), Member
	Conflict SEP, NIH Special Panel for Rapid Investigation of SARS-CoV-2
	and COVID-19
2020-	Member of Council, American Society for Virology
2020-	UM Office of Research, COVID19 Research Prioritization Committee
2020-	UM COVID19 Clinical Trials Feasibility Committee
2020-	Division of Infectious Diseases COVID19 Task Force
2020-	Michigan Medicine Ad Hoc Working Group on PPE Decontamination

Industry Relationships and Non-academic Activities

2018Consultant for Sanofi2018-Member of Steering Committee for Roche, CENTERSTONE: a global

phase IIIb, randomised, double-blind, placebo-controlled clinical efficacy study of baloxavir marboxil for the reduction of direct transmission of influenza from otherwise healthy patients to household contacts Expert witness in litigation regarding control of COVID19 in correctional facilities. Review of documents, preparation of declarations/affidavits, and testimony in Federal Court. *Cameron et al. v Bouchard et al.* (Oakland County) *Wayne County Jail Inmates et al. v William Lucas et al.* (Wayne County) *Abrams et al. v Chapman et al.* (Michigan Department of Corrections) *Plata et al. v Newson et al.* (California Department of Corrections)

Seminars and Extramural Invited Presentations:

Intramural Seminars

2020-

Intramural Seminars	
06/2012	UCSF Liver Center Symposium
11/2012	School of Public Health MAC-EPID Symposium
12/2012	Monthly EEB "Theory Group" Lunch Seminar
12/2012	Evolution, Health, and Adaptation Program Seminar Series
11/2013	Blood and Marrow Transplant Program Research Update Meeting
11/2013	Department of Ecology and Evolutionary Biology Seminar Series
09/2014	Division of Infectious Diseases Grand Rounds
10/2014	Department of Internal Medicine Grand Rounds
10/2014	Speaker, Biological Sciences Scholars Program Retreat
10/2015	Department of Computational Medicine and Bioinformatics
10/2016	University of Michigan M&I, Michigan State MMG Joint Retreat
10/2016	Department of Ecology and Evolutionary Biology Tuesday Seminar
12/2016	Division of Infectious Diseases Grand Rounds
10/2017	Department of Microbiology and Immunology
01/2019	RNA Innovation Seminar Series
09/2019	Division of Infectious Diseases Grand Rounds
05/2020	Department of Internal Medicine Grand Rounds
06/2020	Biosciences Initiative Symposium on SARS-CoV-2 and COVID19

Extramural Invited Presentations

12	2/2000	Columbia University, Department of Pathology
02	2/2011	UC-Berkeley, Center for Theoretical and Evolutionary Genomics
03	3/2011	Blood Systems Research Institute Symposium, San Francisco, CA
04	4/2011	Columbia University, Division of Infectious Diseases
09	9/2011	University of Michigan, Division of Infectious Diseases
09	9/2011	San Francisco State University, Cell and Molecular Seminar Series
11	/2011	Stanford University, Division of Infectious Diseases
11	/2011	Yale University, Division of Infectious Diseases
01	/2014	University of Utah, Microbial Pathogenesis Seminar Series
02	2/2014	NanoBio Corporation, Michigan
05	5/2015	University of Toledo, Department of Microbiology and Immunology
05	5/2015	Vanderbilt University, Division of Infectious Diseases

07/2015	Ecology and Evolution Symposium, American Society for Virology
03/2016	Penn State University, Center for Infectious Disease Dynamics
03/2016	Wayne State University, Department of Immunology and Microbiology
02/2017	Laufer Center for Physical and Quantitative Biology, SUNY Stonybrook
03/2017	Ninth Workshop on Virus Evolution, State College, PA
08/2017	NIAID Workshop on Enteroviruses, Rockville, MD
09/2017	University of Pennsylvania, Department of Microbiology
09/2017	University of Chicago, Committee on Microbiology
10/2017	IDweek 2017 Invited Presentation, San Diego, CA
11/2017	University of Illinois, School of Molecular and Cellular Biology
01/2018	Mt. Sinai, Global Health and Emerging Pathogens Institute
03/2018	University of Chicago Comm. on Genetics, Genomics, and Systems Bio.
04/2018	Emory Department of Pediatrics Research Grand Rounds
04/2018	Emory Population Biology, Ecology, and Evolution Seminar Series
05/2018	NIAID Laboratory of Viral Diseases Seminar Series
07/2018	State of the Art Lecture, American Society for Virology Annual Meeting
08/2018	Fred Hutchinson Cancer Research Center CIDID Seminar
09/2018	Duke University, Department of Microbiology and Molecular Genetics
10/2018	Michigan State University, Department of Micro and Molecular Genetics
11/2018	University of Virginia, Division of Infectious Diseases
01/2019	University of Texas Medical Branch, Department of Biochemistry
03/2019	Center for Communicable Disease Dynamics, Harvard SPH
03/2019	Center for Virus Research, University of California, Irvine
05/2019	University of Rochester, Department of Medicine
07/2019	Israel Ministry of Health, Center for Disease Control
10/2019	Institute for Molecular Virology, University of Wisconsin
10/2019	Global Infectious Diseases Seminar, University of Wisconsin
03/2020	University of Iowa, Department of Internal Medicine

Bibliography:

Google Scholar Summary

Citations	2879	1963 since 2015
h-index	25	20 since 2015
i10-index	34	26 since 2015

Peer Reviewed

- 1. Novick P, Garrett MD, Brennwald P, Lauring AS, Finger FP, Collins R, and TerBush DR (1995) Control of exocytosis in yeast, *Cold Spring Harbor Symposia on Quantitative Biology*, Vol. 60.
- 2. Rohn JL, **Lauring AS**, Linenberger ML, and Overbaugh J (1996) Transduction of *Notch2* by feline leukemia virus in infected cats with thymic lymphoma, *Journal of Virology*, 70(11):8071-8080.
- 3. Rohn JL, Gwynn SR, Lauring AS, Linenberger ML, and Overbaugh J (1996) Viral genetic variation, AIDS, and the multistep nature of carcinogenesis: the feline leukemia virus model, *Leukemia*, 10(S1):1067-1069. <u>Review</u>.

- 4. Collins RN, Brennwald P, Garrett M, Lauring AS, and Novick P (1997) Interactions of nucleotide release factor Dss4p with Sec4p in the post-Golgi secretory pathway of yeast, *Journal of Biological Chemistry*, 272(29):18281-18289.
- 5. Anderson MM, Lauring AS, Burns CC, and Overbaugh J (2000) Identification of a cellular cofactor required for infection by feline leukemia virus, *Science*, 287(5459):1828-1830.
- 6. Gwynn SR, Hankenson FC, Lauring AS, Rohn JL, and Overbaugh J (2000) Feline leukemia virus sequences that affect T-cell tropism and syncytia formation are not part of known receptor binding domains, *Journal of Virology*, 74 (13):5754-5761.
- 7. Lauring AS and Overbaugh J (2000) Evidence that an IRES within the Notch2 coding region can direct expression of a nuclear form of the protein, *Molecular Cell*, 6(4):939-945.
- 8. Lauring AS, Anderson MM, and Overbaugh J (2001) Specificity in receptor usage by FeLV-T: implications for the in vivo tropism of immunodeficiency-inducing variants, *Journal of Virology*, 75(19):8888-8898.
- 9. Anderson MM, Lauring AS, Robertson S, Dirks C, and Overbaugh J (2001) Feline Pit2 functions as a receptor for subgroup B feline leukemia viruses, *Journal of Virology*, 75(22): 10563-72.
- 10. Lauring AS, Cheng HH, Eiden MV, and Overbaugh J (2002) Genetic and biochemical analyses of Pit1 determinants for FeLV-T suggest a novel mechanism for entry, *Journal of Virology*, 76(16):8069-77.
- 11. Graber C, Lauring AS, Chin-Hong PV (2007) Clinical problem solving: A stitch in time, *The New England Journal of Medicine*, 357(10):65-70. <u>Case Report.</u>
- 12. Webster DR[†], Hekele A[†], Lauring AS, Fischer K, Li H, Andino R, and DeRisi J (2009) An enhanced single base extension technique for the analysis of complex viral populations, *PLoS ONE*, 4(10):e7453.
- 13. Lauring AS[†], Jones JO[†], and Andino R (2010) Rationalizing the development of live attenuated virus vaccines, *Nature Biotechnology*, 28(6):573-579. <u>Review</u>.
- 14. Lauring AS and Andino R (2010) Quasispecies theory and the behavior of RNA viruses, *PLoS Pathogens*, 6(7):e1001005. <u>Review</u>.
- 15. Lauring AS and Andino R (2011) Exploring the fitness landscape of an RNA virus by using a universal barcode microarray, *Journal of Virology*, 85(8):3780-3791.
- 16. Lauring AS, Acevedo A, Cooper SB, and Andino R (2012) Codon usage determines the mutational robustness, evolutionary capacity and virulence of an RNA virus, *Cell Host and Microbe*, 12(5):623-632.
- 17. Lauring AS*, Lee TH, Martin JN, Hunt PW, Deeks SG, and Busch M (2012) Lack of evidence for mtDNA as a biomarker of innate immune activation in HIV infection, *PLoS ONE*, 7(11):e50486.
- 18. Lauring AS*, Frydman J, and Andino R (2013) The role of mutational robustness in RNA virus evolution, *Nature Reviews Microbiology*, 11(5):327-336. <u>Review</u>.
- 19. Venkatesan A, Tunkel A, Bloch K, Lauring AS, Sejvar J, Bitnun A, Stahl JP, Mailles A, Drebot M, Rupprecht C, Yoder J, Cope JR, Wilson M, Whitley R, Sullivan J, Granerod J, Jones C, Eastwood K, Ward K, Durrheim D, Solbrig MV, Guo-Duong L, and Glaser CA on behalf of the International Encephalitis Consortium (2013) Guidelines and priorities in Encephalitis: Consensus of the International Encephalitis Consortium, *Clinical Infectious Diseases*, 57(8):1114-1128.
- 20. Wang H, Perry JW, Lauring AS, Neddermann P, De Francesco R, and Tai AW (2014)

Oxysterol-binding protein is a phosphatidylinositol 4-kinase effector required for HCV replication membrane integrity and cholesterol trafficking, *Gastroenterology*, 146(5):1373-1385.

- 21. Long D, Fix O, Deng, X, Seielstad M, and Lauring AS* (2014) Whole genome sequencing identifies candidate risk alleles for severe outcomes of hepatitis A virus infection, *Journal of Medical Virology*, 86(10):1661-1668.
- 22. Bull JJ and Lauring AS* (2014) Theory and empiricism in virulence evolution, *PLoS Pathogens*, 10(10):e1004387.
- 23. Pauly MD and Lauring AS* (2015) Effective lethal mutagenesis of influenza virus with three nucleoside analogs, *Journal of Virology*, 89(7):3584. Selected for Spotlight feature by the editors.
- 24. Jorge DMdM, Mills R, and Lauring AS* (2015) CodonShuffle: A tool for generating and analyzing synonymously mutated sequences, *Virus Evolution*, 1(1): vev012.
- 25. Long D, Deng X, Singh P, Loeb M, Lauring AS*[†], Seielstad M[†] (2016) The contribution of rare genetic variation to susceptibility to West Nile virus neuroinvasive disease, *Genes and Immunity*, 17:298-304.
- 26. McCrone JT and Lauring AS* (2016) Measurements of intrahost diversity are extremely sensitive to systematic errors in variant calling, *Journal of Virology*, 90(15):6884-6695. Selected for Spotlight feature by the editors.
- 27. Presloid JB, Mohammad TF, Lauring AS*†, Novella IS† (2016) Antigenic diversification is correlated with increased thermostability in a mammalian virus, *Virology*, 496:203-214. <u>Selected for Journal Highlights feature by the editors</u>.
- 28. Petrie JG, Ohmit SE, Cheng CK, Martin ET, Malosh RE, Lauring AS, Lamerato L, Reyes KC, Flannery B, Ferdinands JM, Monto AS (2016) Influenza vaccine effectiveness against antigenically drifted influenza higher than expected in hospitalized adults: 2014-2015, *Clinical Infectious Diseases*, 63(8):1017-1025
- 29. Ganesan S, Pham D, Jing Y, Farazuddin M, Hudy MH, Unger B, Comstock AT, Proud D, Lauring AS, Sajjan US (2016) TLR2 activation limits rhinovirus-stimulated CXCL-10 by attenuating IRAK-1-dependent IL-33 receptor signaling in human bronchial epithelial cells, *J Immunol*, 197(6):2409-2420.
- 30. Visher E[†], Whitefield SE[†], McCrone JT, Fitzsimmons W, Lauring AS* (2016) The mutational robustness of influenza A virus, *PLoS Pathogens*, 12(8):e1005856.
- 31. Debbink K[†], McCrone JT[†], Petrie JG, Truscon R, Johnson E, Mantlo EK, Monto AS, Lauring AS^{*} (2017) Vaccination has minimal impact on the intrahost diversity of influenza virus, *PLoS Pathogens*, 13(1):e1006194.
- Pauly MD, Procario MC, and Lauring AS* (2017) A novel twelve class fluctuation test reveals higher than expected mutation rates for influenza A viruses, *eLife*, 6:e26437. Commentary at <u>https://elifesciences.org/articles/29586</u>
- 33. Pauly MD, Lyons DM, Fitzsimmons W, and Lauring AS* (2017) Epistatic interactions within the influenza A virus polymerase complex mediate mutagen resistance and replication fidelity, *mSphere* 2(4):e00323-17
- 34. Lyons DM and Lauring AS* (2017) Evidence for the selective basis of transitiontransversion substitution bias in two RNA viruses, *Molecular Biology and Evolution*, 34(12):3205-3215.
- 35. Malosh RE, Martin ET, Callear AP, Petrie JG, Lauring AS, Lamerato L, Fry AM, Ferdinands J, Flannery B and Monto AS (2017) Respiratory syncytial virus hospitalization

in middle-aged and older adults, Journal of Clinical Virology, 96:37-43.

- 36. McCrone JT and Lauring AS* (2018) Genetic bottlenecks in intraspecies virus transmission, *Current Opinion in Virology*, 28:20-25
- 37. McCrone JT, Woods RJ, Malosh RE, Martin ET, Monto AS, and Lauring AS* (2018) Stochastic forces constrain the within and between host evolution of influenza virus. *eLife*, 7:e35962.
- 38. Peck KM and Lauring AS* (2018) Complexities of virus mutation rates. *Journal of Virology* 92(14):e01031-17.
- 39. Segaloff HE, Petrie JG, Malosh RE, Cheng CK, McSpadden EJ, Ferdinands JM, Lamerato L, Lauring AS, Monto AS, Martin ET. (2018) Severe morbidity among hospitalized adults with acute influenza and other respiratory infections; 2014-15 and 2015-16. *Epidemiology and Infection* Jun 8:1-9. doi:10.1017/S0950268818001486.
- 40. Fitzsimmons W, Woods RJ, McCrone JT, Woodman A, Arnold JJ, Yennawar M, Evans R, Cameron CE, Lauring AS* (2018) A speed fidelity trade-off determines the mutation rate and virulence of an RNA virus. *PLoS Biology* 16(6): e2006459.
- 41. Lyons DM and Lauring AS* (2018) Mutation and epistasis in influenza virus evolution. *Viruses* 10(8):407.
- 42. Ferdinands JM, Gagliani M, Martin ET, Middleton D, Monto AS, Murthy K, Silveira FP, Talnot HK, Zimmerman R, Alyanak E, Strickland C, Spencer S, Fry AM, HAIVEN Study Investigators (2019) *Journal of Infectious Diseases* 220(8):1265-1275.
- 43. Petrie JG, Martin ET, Truscon R, Johnson E, Cheng CK, McSpadden EJ, Malosh RE, Lauring AS, Lamerato LE, Eichelberger MC, Ferdinands JM, Monto AS. Evaluation of correlates of protection against influenza infection during A(H3N2) and A(H1N1)pdm09 seasons: Applications to the hospitalized patient population (2019). *Vaccine* 37(10):1284-1292.
- 44. Levine MZ, Martin ET, Petrie JG, Lauring AS, Holiday C, Jefferson S, Fitzsimmons WJ, Johnson E, Ferdinands JM, Monto AS (2019). Antibodies against egg- and cell-grown influenza A(H3N2) viruses in adults hospitalized during the 2017-2018 season. *Journal of Infectious Diseases*. 219(12):1904-1912.
- 45. Monto AS, Malosh RE, Evans R, Lauring AS, Gordon A, Thompson MG, Fry AM, Flannery B, Ohmit SE, Petrie JG, HIVE Study Research Staff, Martin ET (2019). Data resource profile: Household influenza vaccine evaluation (HIVE) study. *International Journal of Epidemiology*. Aug 1;48(4):1040-1040g. doi: 10.1093/ije/dyz086.
- 46. Segaloff HE, Cheng B, Miller A, Petrie JG, Malosh RE, Cheng CK, Lauring AS, Lamerato L, Ferdinands JM, Monto AS, Martin ET (2019). Influenza vaccine effectiveness in the inpatient setting using alternate control groups; Evaluation of potential bias in the test negative design. *American Journal of Epidemiology*. Nov 1. pii: kwz248. doi: 10.1093/aje/kwz248. [Epub ahead of print].
- Valesano AL, Fitzsimmons WJ, McCrone JT, Petrie JG, Monto AS, Martin ET, Lauring AS* (2020), Influenza B viruses exhibit lower within-host diversity than influenza A viruses in human hosts. *Journal of Virology*. Dec 4. pii: JVI.01710-19. doi: 10.1128/JVI.01710-19. [Epub ahead of print]
- 48. Lauring AS* (2020), Within-host diversity, a window into viral evolution. *In Press, Annual Reviews of Virology.*
- 49. Petrie JG, Lauring AS, Martin ET, Kaye KS (2020), Hospital associated respiratory virus infection in children and adults: It doesn't just occur during cold and flu season. *In Press,*

Open Forum Infectious Diseases.

- 50. Schneider DJ, Smith KA, Latuszek CE, Wilke CA, Lyons DM, Penke LR, Speth JM, Marthi M, Swanson JA, Moore BB, Lauring AS, Peters-Golden M (2020), Alveolar macrophage-derived extracellular vesicles inhibit endosomal fusion of influenza virus in a strain- and pH-dependent manner. *EMBO Journal*. e105057. [Epub ahead of print]
- 51. Somers EC, Eschenauer GA, Troost JP, Golob JL, Gandhi TN, Zhou N, Petty LA, Baang JH, Dillman NO, Frame D, Gregg KS, Kaul DR, Nagel J, Patel TS, Zhou S, Lauring AS, Hanauer DA, Martin ET, Sharma P, Fung CM, Pogue JM (2020), Tocilizumab for treatment of mechanically ventilated patients with Covid-19. *In Press, Clinical Infectious Diseases*. [Epub ahead of print] https://doi.org/10.1093/cid/ciaa954
- 52. Le Sage V, Jones JE, Kormuth KA, Fitzsimmons WJ, Ntuibi E, Padovani GH, Arevalo CP, French AJ, Avery AJ, Manivanh R, McGrady EE, Bhagwat AR, Lauring AS, Hensley SE, and Lakdawala SS, Pre-existing immunity provides a barrier to airborne transmission of influenza viruses. *Submitted*.
- 53. Rockey N, Arts P, Li L, Harrison K, Langenfeld K, Fitzsimmons WJ, Lauring AS, Love N, Kaye K, Raskin L, Roberts W, Hegarty B, Wiggington K, Humidity and deposition solution play a critical role in virus inactivation by heat treatment on N95 respirators. *Submitted*.
- 54. Brouwer AF, Myers JL, Martin ET, Konopka KE, Lauring AS, Eisenber MC, Lephart PR, Nguyen T, Jaworski A, Schmidt CJ, SARS-CoV-2 surveillance in decedents in a large urban medical examiner's office. *Submitted*.

† Denotes equal contribution

* Corresponding author

Non Peer Reviewed

- 1. Lampiris H and Lauring AS (2005) Treating HIV: Drug therapy for the antiretroviral experienced patient. *Infectious Diseases, Special Edition.*
- 2. Lauring AS (2005-2006) Cecil's Textbook of Medicine Online Case of the Week www.cecilmedicine.com. Primary author of 22 different clinical-pathological case discussions on a variety of medical topics. Titles available on request.
- 3. Lauring AS (2016) Lessons from reverse translation, *PLoS Pathogens*, 12(6):e1005516
- 4. Petrie JG and Lauring AS (2019) Influenza A (H7N9) virus evolution: Which genetic mutations are antigenically important?, *Journal of Infectious Diseases*, 219(1):3-5.
- 5. Spector-Bagdady K, Higgins PDR, Lok AS on behalf of the Michigan Medicine COVID-19 Clinical Trials Committees, COVID-19 Clinical Trial Oversight at a Major Academic Medical Center, *In Press, Clinical Infectious Diseases*.

Selected Abstracts

- 1. **Lauring AS** and Overbaugh, J (1998) Characterization of IRES-mediated *Notch2* expression in a recombinant feline leukemia virus genome. *Poster presentation, Cold Spring Harbor Meeting on Translational Control.*
- 2. Lauring AS, Rohn JL, and Overbaugh J (1999) An IRES within the coding region of a rearranged *Notch2* can direct expression of the intracellular domain. *Poster presentation, Keystone Symposium on Specificity in Signal Transduction.*
- 3. Lauring AS, Rohn JL, and Overbaugh J (1999) Notch2 is expressed from a recombinant

FeLV genome through a novel translational mechanism. *Poster presentation, West Coast Retrovirus Meeting.*

- 4. Lauring AS, Anderson MM, and Overbaugh J (1999) A novel two component receptor is required for entry by the T-cell tropic FeLV clone 61C. *Oral presentation, West Coast Retrovirus Meeting.*
- 5. Lauring AS, Anderson MM, Burns CC, Eiden MV and Overbaugh J (2000) A novel two component receptor is required for entry by T-cell tropic feline leukemia virus (2000) *Oral presentation, Keystone Symposium on Cell Biology of Virus Entry, Replication, and Pathogenesis.*
- 6. Lauring AS, Anderson MM, Burns CC, Eiden MV and Overbaugh J (2000) A novel two component receptor is required for entry by T-cell tropic FeLV-FAIDS. *Oral presentation*, *Cannes Symposium on Feline Retrovirus Research*.
- 7. **Lauring AS** and Andino R (2008) A microarray based assay for studying viral evolution. *Accepted for Oral presentation, Noble Foundation Workshop on Viral Evolution.*
- 8. Lauring AS, Acevedo A, and Andino R (2010) Genomic analysis of mutant spectrum, fitness, and phenotype in RNA virus populations. *Oral Presentation, Cold Spring Harbor & Wellcome Trust Meeting on Infectious Disease Genomics and Global Health.*
- 9. Lauring AS, Acevedo A, Bigelow HR, and Andino R (2011) Synonymous mutation reveals a link between robustness and virulence in RNA viruses. *Poster Presentation, Gordon Research Conference, Viruses and Cells*. <u>Selected for Outstanding Poster Travel Award.</u>
- 10. Lauring AS, Acevedo A, Bigelow HR, and Andino R (2011) RNA virus populations: structure, robustness, and pathogenesis. *Oral Presentation, American Society for Virology*.
- 11. **Lauring AS** (2013) Codon usage determines the mutational robustness, evolutionary capacity, and virulence of an RNA Virus, *Oral Presentation*, 7th Workshop on Virus Evolution.
- 12. Esensten JS, Cheng MH, Anderson MS, Lauring AS, Chehab FF, Gundling K and Seielstad M (2014) A case of Good syndrome with a full genome analysis of the patient and family, *Poster Presentation, Academy of Clinical Laboratory Physicians and Scientists.*
- 13. Pauly M and Lauring AS (2014) Lethal mutagenesis of influenza A virus, *Oral Presentation, American Society for Virology*.
- 14. Lauring AS (2015) Lethal mutagenesis of influenza and the barriers to resistance, *Oral Presentation,* 8th Workshop on Virus Evolution.
- 15. Jorge DMdM and Lauring AS (2015) A computational approach to define the importance of synonymous mutation to RNA virus evolution, *Poster Presentation*, 8th Workshop on Virus Evolution.
- 16. Presloid JB, Mohammad TF, Lauring AS, Novella IS (2015) A poor correlation between robustness and thermostability in vesicular stomatitis virus, *Oral Presentation, American Society for Virology*.
- 17. Debbink K, McCrone JT, Ohmit S, Monto AS, and Lauring AS (2015) The impact of vaccination on intrahost influenza population dynamics, *Oral Presentation, American Society for Virology*.
- 18. Pauly M and Lauring AS (2015) The mutation rate and mutational spectrum of influenza A virus, *Oral Presentation, American Society for Virology*.
- 19. McCrone JT and Lauring AS (2015) Comprehensive validation of a deep sequencing

pipeline for assessing intrahost viral diversity, *Poster Presentation, American Society for Virology*.

- 20. Petrie JG, Ohmit SE, Martin ET, Malosh RE, Cheng CK, Lauring AS, Lamerato L, Reyes KC, Lipkovich H, Flannery B, Ferdinands JM, Monto AS (2015) Influenza vaccine effectiveness against antigenically drifted influenza higher than expected in hospitalized adults: 2014-2015, *Oral Presentation*, *IDWeek 2015*.
- 21. Lauring, AS, McCrone JT, Debbink K, Truscon R, Johnson E, Malosh RE, Petrie JG, Ohmit SE, Monto AS (2016). Intrahost diversity and household transmission of influenza A viruses over five seasons, *Poster Presentation, Wellcome Trust Meeting on Virus Genomics and Evolution*.
- 22. McCrone JT, Debbink K, Truscon R, Johnson E, Malosh RE, Ohmit SE, Monto AS, Lauring AS (2016) The effects of vaccination and transmission on intrahost influenza diversity, *Oral Presentation, American Society for Virology*.
- 23. Lauring, AS, Fitzsimmons WF, Woods RJ, McCrone JT, Jorge DMdM, Berezovsky A (2016) A speed-fidelity trade-off explains the mutation rate and virulence of an RNA virus, *Oral Presentation*, 2nd ASM Conference on Experimental Evolution.
- 24. Pauly MD and Lauring AS (2016) Biases in the mutation rate spectrum of influenza virus, *Poster Presentation*, 2nd ASM Conference on Experimental Evolution.
- 25. Monto AS, Malosh RE, Lamerato LE, Lauring AS, Petrie JG, Callear A, Martin ET (2016) RSV and influenza in hospitalized adults. *Poster Presentation, RSV16 Symposium*.
- 26. Lauring, AS, McCrone JT, Debbink K, Truscon R, Johnson E, Malosh RE, Petrie JG, Ohmit SE, Monto AS (2016). Next generation sequencing of influenza viruses from a household cohort identifies transmission pairs and a bottleneck size of close to one, *Oral Presentation, IDweek 2016*.
- 27. Lyons D and Lauring AS (2017) The Mutational Fitness Effects of Transitions vs. Transversions Varies Across Viral Taxa, *Oral Presentation*, 9th Workshop on Virus Evolution.
- 28. Lauring AS, Fitzsimmons WF, Woods RJ, McCrone JT (2017) A speed-fidelity trade-off explains the mutation rate and virulence of an RNA virus, *Oral Presentation, Gordon Research Conference, Viruses and Cells.*
- 29. McCrone JT, Woods RJ, Malosh R, Martin ET, Monto AS, Lauring AS (2017) Within and between host population dynamics of influenza, *Poster Presentation, Gordon Research Conference, Viruses and Cells.*
- 30. Lauring AS, McCrone JT, Malosh R, Truscon R, Johnson E, Martin ET, Monto AS (2017) Next generation sequencing of influenza viruses in a household cohort reveals an effective transmission bottleneck of close to one, *Oral Presentation, ISIRV Transmission of Respiratory Viruses.*
- 31. Peck KM and Lauring AS (2017) Fidelity and fitness in RNA viruses, *Poster Presentation, Gordon Research Conference, Microbial Populations*.
- 32. Peck KM and Lauring AS (2018) Fidelity and fitness in RNA viruses, *Oral Presentation, ASU Meeting on Mutation Rate Evolution.*
- 33. Lyons DM and Lauring AS (2018) Mutational fitness effects and epistasis in RNA viruses, SMBE Workshop on Molecular Evolution, *Oral Presentation*.
- 34. McCrone JT, Woods RJ, and Lauring AS (2018) Stochastic processes constrain the within and between host evolution of influenza virus. *Poster Presentation, Wellcome Trust Meeting on Virus Genomics and Evolution.*

- 35. Valesano AL, Fitzsimmons WJ, Petrie JG, Monto AS, Martin ET, Lauring AS (2019) Within and between host evolution of influenza B virus in a household cohort. *Oral Presentation, American Society for Virology.*
- 36. Lauring AS, Valesano AL, Fitzismmons WJ, McCrone JT, Woods RJ, Martin ET, Petrie JG, Malosh R, Monto AS (2019) The evolutionary dynamics of influenza A and influenza B viruses in naturally infected human hosts. *Oral Presentation, OPTIONS X for the Control of Influenza*
- 37. Kuhlbusch K, Nebesky JM, Bernasconi C, Cao B, Cowling B, Haeusler JM, Hirotsu N, Korom S, Lauring AS, Perjesi A, Sato C, Widner A, Wildum S, Monto A (2019) CENTERSTONE: a global phase IIIb, randomised, double-blind, placebo-controlled clinical efficacy study of baloxavir marboxil for the reduction of direct transmission of influenza from otherwise healthy patients to household contacts. *Poster Presentation, OPTIONS X for the Control of Influenza*
- 38. Petrie JF, Lauring AS, Kaye KS (2019) Clinical outcomes of hospital-associated respiratory virus infections. *Poster Presentation, IDweek 2019*.
- 39. Schneider DJ, Smith KA, Latuszek CE, Wilke CA, Lyons DM, Penke LR, Speth JM, Lauring AS, Moore BB, Peters-Golden M (2020) Alveolar macrophage-derived extracellular vesicles protect alveolar epithelial cells from influenza infection. *American Society for Virology*.
- 40. Peck KM, Li Y, Fitzsimmons WJ, Lauring AS (2020) Deep mutational scanning reveals functional constraints on the poliovirus RdRp. *Poster Presentation, American Society for Virology (cancelled due to COVID19).*

Case 4:01-cv-01351-JST Document 3391-1 Filed 07/15/20 Page 23 of 35

EXHIBIT B

Urgent Memo

COVID-19 Outbreak: San Quentin Prison

June 13, 2020

San Quentin California State Prison is experiencing a rapidly evolving COVID-19 outbreak with profoundly inadequate resources to keep it from developing into a full-blown local epidemic and health care crisis in the prison and surrounding communities. The combination of San Quentin's antiquated facilities and severe overcrowding places the prison at high risk of significant COVID19-related morbidity and mortality unless the population is quickly reduced by 50% or more, in addition to adoption of the prevention measures outlined below. The urgent resources San Quentin requires range from human capital to environmental risk reduction and rapid testing. Failure to meet these urgent needs will have dire implications for the health of incarcerated people at San Quentin, correctional staff and the healthcare capacity of Bay Area hospitals.

Background

San Quentin arrives at this tenuous moment with several significant assets including a strong Chief Medical Executive (Dr. Alison Pachynski) and a Chief Physician and Surgeon (Dr. Shanon Garrigan) who have spent the past 3.5 months doing everything in their power to prepare for an unavoidable COVID-19 outbreak. However, these two physicians, even with the enormous assistance they have received from many other healthcare staff including a strong public health nurse, a notably excellent partnership with custody leadership (Acting Warden Ronald Broomfield and the recently arrived Chief Executive Clarence Cryer), and additional staffing from the Regional level, is simply not enough to meet the needs of San Quentin given its size and complexity. <u>As a result, there are multiple vulnerabilities that we witnessed at San Quentin which must be urgently addressed to protect the health and safety of thousands of staff, residents and surrounding community members.</u>

Although this memo outlines the urgent needs of San Quentin Prison, it is our belief that most – if not all – of these recommendations are important for all California Prisons that are certain to experience an outbreak if they have not already.

Urgent needs and immediate actions required:

1. Develop a COVID-Outbreak Emergency Response Team: At present, the over-reliance on local existing medical and correctional leadership to develop an outbreak response plan means that these leaders are tasked with making multiple acute decisions on a daily basis without enough people on the ground to operationalize a centralized game plan or long term strategy. This

responsibility - overwhelming on its own - is then magnified with the additional responsibility of providing implementation oversight of the ad-hoc plan. Instead, local leadership should have the support needed to step back and see the whole picture with a team of staff who can implement and recommend adjustments to the overarching central COVID-19 control strategy as needed on the local level. There simply do not appear to be sufficient on the ground staff who are not working from home. This daily management of the acute phase of the outbreak has the secondary effect of making the lead physicians also less available to coordinate the care and treatment of patients who become acutely ill in the facility and also increases the vulnerability of San Quentin to small errors with potentially dire consequences. Minimum positions required for such a team are included below. Dr. Pachynski and Dr. Garrigan appear to be personally responsible for all of the tasks described below with insufficient tools to support their success. While there may be some central guidance and support offered, additional human capital is urgently needed to achieve the CCHCS's pandemic response goals.

Minimum Recommended Leadership Team Positions:

- Environment of Care Leader. This position would be responsible for evaluating and optimizing the physical plant of the prison for ventilation, sanitation, path of patient flow (for example developing policies and procedures for how infected patients are transferred through the institution) and planning for how to reconfigure and reimagine needed space for quarantine, general population or medical isolation units depending on how the number of affected patients increases or decreases over time. This position would also work with plant operations to ensure that all air vents are cleaned and well functioning and would organize the creation of a field hospital(s) or quarantine tents as needed.
- Healthcare Custody Coordination Leader. This position would focus on partnering with Custody (and working closely with the Staff Healthcare Liaison Leader, described below) to review current housing on a daily basis, and to determine the appropriate way to cohort and house residents including developing quarantine areas (in partnership with the Environment of Care Leader). This position would also be responsible for ensuring that appropriate testing is done prior to any transfer of residents to other state facilities or to the community.
- **COVID-19 Testing Leader.** This position would be responsible for coordinating with the testing center (at this moment QUEST Diagnostics) including reaching out through public and private sources and coordinating with the state and local departments of public health to improve testing turnaround time, running the list with medical staff (and the Epidemiologist, described below) on a daily basis to determine who has and who needs testing, and coordinating contact tracing in response to testing results and reporting of symptoms throughout the facility.
- **Staff Healthcare Liaison Leader.**This position would work with correctional leadership to cohort staff, develop plans that eradicate staff working at more than one housing facility throughout the day, train and enforce PPE rules, support contact tracing and administrative leave needs among exposed and infected staff, and investigate alternatives to potential

sources of staff-to-staff infections such as shared vanpools. This position would also track daily staff movements in order to assist with contact tracing when needed.

- Epidemiologist Analyst Leader. This position would be responsible for maintenance of a line listing of all active cases and for all data analysis and reporting. This position would also be responsible for a "patient tracking process" of the facility including daily review of the COVID Monitoring Registry to provide a close scrutiny of who has tested positive or is in quarantine where they are currently housed (and were recently housed), and the same for those who have tested negative. In addition, this position would assist the Environment of Care leader and the Healthcare Custody Coordination Leader to manage patient movement to quickly clear people when they have tested negative and return them to the General Population in order to free up much-needed quarantine cells. This position would also manage testing data (e.g., some inmates in the reception area have been tested 3-4 times and test results are coming in at different times).
- 2. Address Unsafe Overcrowding. Although there are currently 3547 total inmates, approximately ~1400 have at least one COVID risk factor (as do many, unknown, staff members). This means they are at heightened risk of requiring ICU treatment and/or mortality if infected. We detail the units of most immediate concern below. Given the unique architecture and age of San Quentin (built in the late 1800s and early 1900s), there is exceedingly poor ventilation, extraordinary close guarters esacerbated by overcrowding, and inadeguate sanitation, we recommend that the prison population at San Quentin be reduced to 50% of current capacity (even further reduction would be more beneficial) via decarceration; this will allow every cell in North and West blocks to be single-room occupancy and would allow leadership at San Quentin to prioritize which units to depopulate further including the high-risk reception center and gymnasium environments. It is important to note that we spoke to a number of incarcerated people who were over the age of 60 and had a matter of weeks left on their sentences. It is inconceivable that they are still housed in this dangerous environment. It is a frightening public health reality that in a matter of days there may be no cells to isolate a potentially infectious **COVID-19 patient;** the only way to manage the situation is to significantly reduce the prison population (and it is too risky to move inmates to other facilities).

Housing units of most concern at San Quentin at present time:

North Block and West Block are each open-grill, 5-tier buildings with a capacity of 800 persons each. Ventilation is poor - windows have been welded shut and the fan system does not appear to have been turned on for years; heat on the far side of the building can be stifling. Over 50% of the residents housed in these units have at least 1 COVID risk factor, and an alarming ~300 inmates have 4 or more COVID risk factors. An outbreak in North and West blocks could easily flood – and overwhelm – San Quentin as well as Bay Area hospitals. (For example, see San Francisco hospital capacity:

https://data.sfgov.org/stories/s/Hospital-Capacity/qtdt-yqr2/)

- <u>Reception center</u> which currently houses ~500 persons. In the reception Center's "Badger Unit" where people from CIM were transferred, the fear and outrage are palpable – people are yelling throughout the housing unit due to discontent about the COVID-19 situation including intake of inmates from CIM and loss of privileges (thereby increasing the risk of COVID-19 spread throughout the tiers via respiratory droplets). It is hard to imagine that violent incidents will not erupt at some point soon further threatening the safety and health of residents and staff alike.
- <u>The Gymnasium</u>, which has been converted to a dorm. There is little to no ventilation in the housing unit creating high-risk for a catastrophic super spreader event. At a minimum, the gymnasium beds should be spread out more to ensure additional distance between residents and the second set of doors in the gymnasium dorm must be opened to ensure air turnover which may necessitate a second officer station for security reasons. This unit should be prioritized for closure if sufficient population reduction can be achieved.
- HVAC in all units above and in other housing areas there is an immediate need to clean and turn on all fan and HVAC systems immediately (North Block, Gymnasium, Dorms) in order to maximize air exchange and ventilation as soon as possible ideally in the next few days. Of note, the exhaust pumps and filters appear dirty on visual inspection, and require clearing and cleaning. Since maximizing ventilation and air exchange decreases COVID-19 transmission, doors and windows should be opened as much as possible (some have been welded shut and must be remediated). If opening doors makes it difficult for officers to do their jobs then we would recommend that officer stations be rearranged or new ones set up so as to improve air exchange. Note that the important aspect is *air exchange*, not only the movement of air within the room. Fans that blow air around may help cool people, but they don't decrease rebreathing aerosols unless they filter the air or increase air exchange (diluting the aerosol).
- **3.** Immediately Improve Testing. It is inconceivable that in the Bay Area the medical leadership at San Quentin is having to manage an outbreak in their massive antediluvian facilities with PCR tests on a 5-6 day turn-around time. We would argue that there is no higher testing priority for around 100 miles and resources need to be shifted immediately to respond or there will be a massive, uncontrollable outbreak (if it is not too late already). In addition (and this certainly goes without saying), transfers between all facilities must halt until medical staff are able to certify that all testing and quarantine procedures can be followed. Our recommendations are as follows:
 - Liaise with testing laboratory to streamline testing, including exploring observed selfcollection of samples and alternate anatomic sites of testing (e.g. saliva, nares swabs)
 - Improve testing turnaround time at QUEST or go through other laboratories that will be able to improve turnaround time (5-6 days or more is completely unacceptable). As an example, CMC was able to respond rapidly to their outbreak with a turnaround testing time of 24 hours at some points in the outbreak. Large-scale testing with rapid receipt of results is essential to allow the medical team to minimize community spread. If tests are sent to

laboratories other than QUEST, support San Quentin in adding these results to the EMR as the current process of scanning and manual entry is overly laborious.

- The California Department of Public Health should be compelled to prioritize specimens from San Quentin given the potential for super-spreading in that environment.
- Testing of symptomatic patients must be done with individual testing. Testing of asymptomatic patients to identify people who are shedding virus can be done with pools of samples. Without additional information, pools of 10 should be used. This approach can be used for frequent retesting of people at especially high risk of spreading the virus (staff and inmates in large housing units i.e. almost all of San Quentin).
- San Quentin requires on-site testing including cartridges and well-trained staff to conduct these (currently they have inadequate staffing to conduct mass swabbing). Sample transport just adds time. San Quentin will need high volume testing for many months, perhaps years. They should have testing capacity on-site and available round-the-clock.
- Of note, because testing time is so slow, little to no contact tracing can happen. Furthermore, patients cannot be appropriately housed based on test results when these results return 6 days later as a patient may have been exposed in the interim. As a result, entire units are put on lockdown status for the span of a quarantine. In the long term, as this pandemic will last at least another year and likely longer, this will threaten long term goodwill between residents and staff and have profound mental health consequences for the population and staff alike.
- 4. Develop Additional Medical Isolation and Quarantine Housing. Those in *Quarantine* (for those with a credible exposure to COVID-19 and are asymptomatic) are housed in Carson. Of note, all who arrived from CIM were housed in the Reception Center's Badger Unit 4th and 5th Tiers. This was beyond usual practice due to volume. Those in *Medical Isolation* (for those who have tested positive for COVID-19 and suspects with symptoms who are awaiting testing) have been housed in the Adjustment Center as this is the only unit at San Quentin that has single cells with solid doors. There are ~102 cells in the Adjustment Center of this type and already ~80 cells are full. At the advice of the local health department, 3 of the CIM buses were placed in this isolation unit once a person from the bus turned positive due to the high-level serious exposure. Therefore, some of these individuals might end up with negative tests and can then be moved out of Medical Isolation.

However, a massive outbreak at San Quentin will significantly overwhelm the availability of these 102 Medical Isolation cells, and there will quickly be nowhere for infectious cases to be moved. For this reason, we believe that there is an **urgent need for immediate creation of a field hospital to relieve the imminent overflow problem in the Medical Isolation unit**. In addition, people with COVID-19 are known to experience rapid physical decompensation; this is therefore

not an ideal time for a patient to be behind a solid door in the most secure areas of the prison out of the sight of medical or nursing staff in the case of an emergency.

Some suggestions for additional Quarantine and Medical Isolation space below:

- Convert nearby chapels (there are 3) into field hospitals. This field hospital can house all people with confirmed COVID-19 ("Medical Isolation Unit") as there are not substantial risks to housing infected patients together and these patients would then have access to supervising nurses who could regularly check their respiratory status and comfort levels. The chapels are large, well-ventilated rooms conveniently located near the current Medical Isolation Unit and with road access for ambulances and other transport. We recognize the housing plans will become increasingly complex as people of multiple security levels require housing in Quarantine or Medial Isolation housing. This again reinforces the need for a dedicated team leader (the Healthcare Custody Coordination Leader) who oversees the work of partnering with corrections to identify medically appropriate housing solutions.
- Once a field hospital is created, San Quentin will need another site for Quarantine. One • option is to keep Adjustment Center housing for Quarantine. Due to the incredible fear involved with being moved to the Adjustment Center cells not to mention possible shortand long-term mental health effects, we would strongly recommend that custody immediately develop additional, positive incentives to improve mental health for the 14-day guarantine period for those housed in the Adjustment Center for Quarantine, such as access to personal tablets with movies, increased access to canteen items, personal effects and a certain number of free phone calls, perhaps on state-owned cell phones. While these interventions may seem beyond the normal routine of prisons in California, they are simple, low-cost measures that would go a long way toward building good will and ensuring that inmates who become symptomatic are willing to come forward to medical treatment with their symptoms. Furthermore, they may dampen the growing security risk associated with the aforementioned discontent among inmates. It is also possible that if enough highsecurity level individuals need medical isolation then they would need to use this unit for them and would require alternate housing options for Quarantine (perhaps the Carson housing unit which is currently being used for quarantine, although ideally the Carson housing unit would be only used for guarantine, further necessitating population reduction to control this epidemic at San Quentin). An mentioned above, in a matter of days/weeks, there may be no reasonable isolation locations for infectious COVID patients.
- 5. Improve General Prevention efforts throughout the facility. In particular, we witnessed suboptimal mask use by staff, and three "medical pass nurses" sitting in a work room without masks. Moreover, custody work stations are not set up to physically distance, no additional workstations appear to have been built yet. As a result, even with the best of efforts, officers wind up clustered near each other around a central podium. An infection control nurse and environmental assessment would go a long way towards identifying opportunities to partially alleviate these problems.

6. Staffing Cohorting is a necessity. At present work shift plans are inadequate from a public health perspective. For example, we learned about staff who were working in the Medical Isolation Unit (Adjustment Center) during the shift and were scheduled to work the next shift in the dorms. This is an enormous risk for the spread of COVID-19 between housing units.

Sandra McCoy, Associate Professor of Epidemiology & Biostatistics, The University of California, Berkeley School of Public Health

Stefano M. Bertozzi, MD, PhD, Professor of Health Policy & Management and Dean Emeritus, The University of California, Berkeley School of Public Health

David Sears, MD, Assistant Professor of Internal Medicine, Infectious Diseases, The University of California, San Francsico

Ada Kwan, PhD Candidate, Division of Health Policy & Management, The University of California, Berkeley School of Public Health

Catherine Duarte, PhD Candidate, Division of Epidemiology & Biostatistics, The University of California, Berkeley School of Public Health

Brie Williams, MD, MS, Professor of Medicine, The University of California, San Francsico and Director of Amend at UCSF

Amend at UCSF is a health-focused correctional culture change program led by experts in medicine, infectious diseases, public health, and correctional health and policy that is providing correctional leaders, policymakers, and advocates the evidence-based tools they need to protect the health and dignity of those who live and work in jails and prisons during the COVID-19 pandemic.

The University of California, Berkeley School of Public Health is working on the leading edge of research, educating the public, and mobilizing to serve California's most vulnerable populations during the COVID-19 pandemic.

For more information:

https://amend.us/covid

Case 4:01-cv-01351-JST Document 3391-1 Filed 07/15/20 Page 31 of 35

EXHIBIT C

COVID-19 SPACE NEEDS FOR PREVENTION, ISOLATION AND QUARANTINE July 11, 2020

Below is a summary of principles and strategies that guide how the department should manage physical space and prison populations in order to both prevent the introduction of COVID-19 into the prison and to contain the spread of COVID-19 infection once introduced. A fundamental underlying tenet of this proposal is that each institution must have adequate space to allow for the housing, feeding, and programing of all inmates under its care.

The methodology for determining the number of empty beds, including the 20% adjustment noted at the end of this document, was based upon our experience during the pandemic with outbreaks of different sizes. We have experienced four large outbreaks (total positives greater than 500), six medium-sized outbreaks (total positives greater than 100 and less than 500), and fourteen small outbreaks (total positives between 1 and 99). The goal of this analysis and its associated methodology is to ensure to the extent reasonably feasible that each institution has enough beds to handle the beginning phases of an outbreak in order to significantly reduce the risk of it blossoming into a medium-sized or large outbreak.

A number of caveats apply to use of this document:

- 1) This product was intended to guide the decision of how many beds are needed to house the residents of an institution, and not to determine where they will go or whether they need to be released.
- 2) Use of the word "shall" does not result in this document being directive. It is not directive and does not constitute policy or procedure.
- 3) Realities on the ground might require exceptions to the points noted in these documents.

Although the summary focuses on the inmate populations that need to be separated into different types of isolation and quarantine spaces, the overall public health approach must include all of the following:

- 1) Routine periodic COVID-19 testing of staff;
- 2) Management of work assignments to minimize overlap of staff contact between different inmate populations;
- 3) Consistent and appropriate utilization of personal protective equipment; and
- 4) Intensified cleaning and disinfection practices of housing and work spaces.

Early data suggests that inadequate ventilation may contribute to the transmission of COVID-19 within congregate living environments. Strong consideration should be given to performance monitoring of and routine preventive maintenance of all components of housing unit ventilation systems (e.g., fans, filters, ducts, supply diffusers, and exhaust grilles) and any air-cleaning devices in use. Performance monitoring should include directional airflow assessment and measurement of supply and exhaust airflows to compare with recommended air change rates.

Isolation and Quarantine basic concepts

There are two major categories of patient populations to consider once a case has been identified: *isolation and quarantine*, and within each of these categories, there are two subcategories.

For the populations requiring isolation space, there are two different populations that shall not be cohorted together:

Case 4:01-cv-01351-JST Document 3391-1 Filed 07/15/20 Page 33 of 35

- 1) Persons who have confirmed COVID-19 infection; and
- 2) Those who are symptomatic but do not have confirmed infection.

For populations requiring quarantine space, there are two groups that shall not be cohorted together and who require different levels of clinical monitoring to identify persons who become symptomatic:

- 1) Persons with known exposure to COVID-19 who are asymptomatic; and
- 2) Those who are asymptomatic but have a higher risk of infection due to their movement history or having been in crowded conditions without public health precautions.

In planning for effective isolation and quarantine space, each institution must also take into account unique patient factors that may impact upon where a patient can be housed. Examples include Clark, Coleman, and Armstrong factors as well as restricted housing needs.

Prevention In the absence of cases

Cohorts, or household units, should be as small as possible (1-8 persons) to minimize spread once the virus is introduced. Inmates and staff should be cohorted in housing areas with minimal contact between household units.

Wherever possible, rooms must be arranged to have as few inmates as possible and to allow as much physical distancing as possible. If cells have bars rather than walls, or are porous rather than solid closed doors, ideally one would leave an empty cell on each side of an occupied cell to maintain distancing.

Transfers of inmates shall be limited to those which are necessary for clinical care, medical isolation or quarantine, reduction of overcrowding, and serious custody concerns. If transfer must take place, pre and post transfer quarantine and COVID-19 testing is required. Inmates shall wear face coverings during transfer, and staff shall wear appropriate PPE and utilize disinfected transportation vehicles.

Containment once a case is identified

Patients who are placed in either isolation or quarantine shall move outside of the isolation or quarantine space as little as possible. Medical care should be provided and meals should be served within the space, isolated persons should be assigned a dedicated bathroom, quarantined persons should be assigned a separate dedicated bathroom, and group activities should be postponed.

- 1. Isolation: Persons who are CONFIRMED to have COVID-19:
 - Isolation is necessary.
 - For individual cases, the preference is for isolation in a negative pressure room.
 - The second choice is isolation in a private room with a solid, closed door.
 - Multiple confirmed COVID-19 positive cases can be housed together.
 - Confirmed positive patients shall not be housed in the same unit with those who are not known to have COVID-19.
 - If there are no other options and these patients must be housed in the same building with noninfected patients, they must be physically separated from patients who do not have COVID-19. Physical separation requires solid walls and solid doors.
 - Patients confirmed to have COVID-19 shall not be housed in dorms with those who are not confirmed to have COVID-19.
 - Daily healthcare monitoring shall be conducted for patients diagnosed with COVID-19.

- 2. Isolation: Persons who are SYMPTOMATIC but not confirmed to have COVID-19 (tests are pending or refused):
 - Isolation is necessary.
 - For individual cases, the preference is for isolation in a negative pressure room.
 - The second choice is isolation in a private room with a solid, closed door.
 - If patients cannot be isolated alone, they can be isolated with other patients who have the same symptoms; however, 6 feet of distancing is necessary between each patient.
 - Daily healthcare monitoring shall be conducted for patients with symptoms of pneumonia.
- 3. Quarantine: Persons who have been EXPOSED to COVID-19, but are asymptomatic:
 - Quarantine is necessary.
 - These patients are at risk of being infected and/or becoming infected as a result of their exposure. Thus, they shall be separated from both the confirmed cases and from the symptomatic but not yet confirmed cases to avoid re-exposure.
 - Quarantine cohorts shall be as small as possible (1-8 persons) to minimize spread.
 - Cohorts with different exposure dates shall be separated. Cohorts with different types of exposures shall also be separated, including those coming in from jails or transferring between institutions.
 - Serial testing and healthcare surveillance is used to identify those infected so that they can be moved to isolation.
- 4. Quarantine: Asymptomatic persons who are being prepared to move from one institution to another, and those arriving from another institution:
 - Quarantine is necessary.
 - Each facility shall maintain sufficient quarantine space to accommodate its historical average volume of transfers in and out.
 - Quarantine cohorts shall be as small as possible (1-8 persons) to minimize spread.
 - Cohorts with different movement dates shall be separated. Cohorts with different types of movement shall also be separated, including those coming in from jails or transferring between institutions.
 - Serial testing and healthcare surveillance is used to identify those infected so that they can be moved to isolation.
 - Except in emergency situations, patients shall not be routinely moved from one institution to another without testing COVID-19 negative.
 - Patients arriving to an institution shall not be released from quarantine until they have sequentially tested negative for COVID-19.

Containment in the setting of a large scale outbreak

To plan for the possibility of a large-scale outbreak of COVID-19, each facility in each prison shall identify space that will allow for rapid isolation and quarantine of impacted patients. Each facility shall identify its largest congregate living space. Each facility shall maintain empty beds equivalent to the capacity of its largest congregate living space or 20% of the current population of the facility, whichever is larger.

Quarantine space

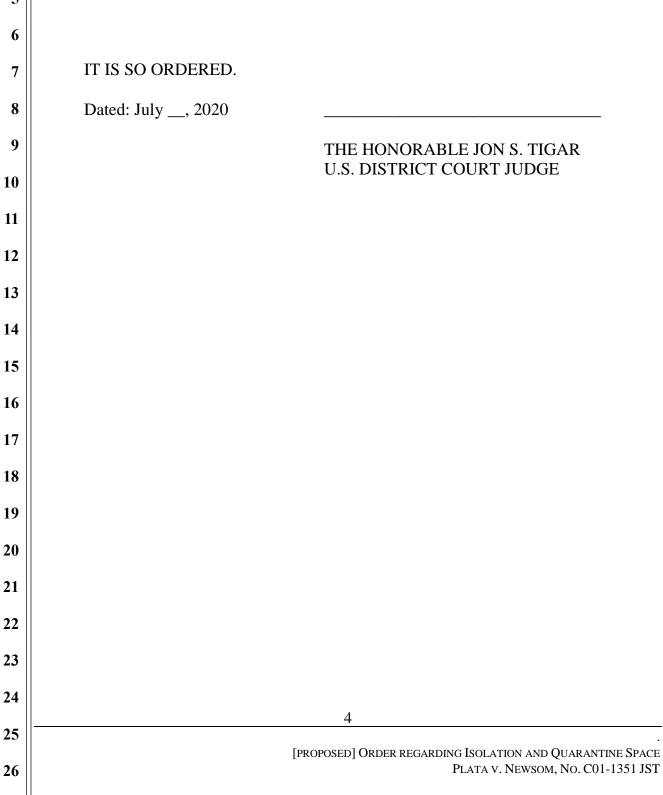
Each facility shall identify sufficient space to allow for the quarantine of all inmates who are arriving or departing from that institution.

Definitions

"Facility" is that portion of a prison designated as a separate functional unit, usually denoted by a letter (e.g., Facility A, Facility B).

The "largest congregate living space" of a facility is the housing unit that has the capacity to house the largest number of people.

The "capacity" of the largest congregate living space shall be determined based on the "Covid Blueprint Capacity": the number of people CDCR/CCHCS have determined may be housed in that living space consistent with physical distancing and other COVID-19 prevention measures currently in place.


	Case 4:01-cv-01351-JST	Document 3391-2	Filed 07/15/20	Page 1 of 4
1 2 3 4 5 6 7	PRISON LAW OFFICE DONALD SPECTER (83 STEVEN FAMA (99641 ALISON HARDY (1359) SARA NORMAN (18953 RANA ANABTAWI (26 SOPHIE HART (321663) 1917 Fifth Street Berkeley, California 947 Telephone: (510) 280-26 Fax: (510) 280-2704 <u>dspecter@prisonlaw.com</u> Attorneys for Plaintiffs) 66) 36) 7073)) 10 521		
8	TI			D/T
9		NITED STATES D		
10		SAN FRAN		
11				
12	MARCIANO PLATA, et a	al.,	Case No. C01-1.	351 JST
13	Plaintiffs, v.		[PROPOSED]	ORDER ON
14	GAVIN NEWSOM., et al.	•	ISOLATION A SPACE	ND QUARANTINE
15	Defendants.			
16				
17	The Court finds tha	t in light of recent e	vents, especially	at San Quentin, it is
18	imperative for Defendants	to have sufficient pl	hysical space in e	each prison to reduce the
19	risk of serious harm and death from COVID-19. At the present time, neither party has			
20	developed a plan to ensure that there is adequate physical space to keep the incarcerated			
21	population reasonably safe from the virus. Accordingly, the Receiver was asked to			
22	develop principles that would for the first time in this litigation quantify the space needs			
23	of the CDCR in light of to		-	
24		1	· · · F -	
25				OLATION AND QUARANTINE SPACE
26		[rk0r03ED]		TA V. NEWSOM, NO. C01-1351 JST

1	Pursuant to that request, the Receiver drafted a statement "of principles and
2	strategies that guide how the department should manage physical space and prison
3	populations in order to both prevent the introduction of COVID-19 into the prison and to
4	contain the spread of COVID-19 infection once introduced. A fundamental underlying
5	tenet of this proposal is that each institution must have adequate space to allow for the
6	housing, feeding, and programing of all inmates under its care." Kelso, COVID-19
7	Space Needs for Prevention, Isolation and Quarantine, July 11, 2020, at 1.
8 9	Based on his experience with the tragic toll that the virus has taken to the present
9 10	day and his firsthand experience managing the pandemic response in institutions that
11	have had outbreaks, the Receiver has developed a methodology for determining the space
12	needs of each institution. Specifically, the Receiver states,
13	The methodology for determining the number of empty beds was based
14	upon our experience during the pandemic with outbreaks of different sizes. We have experienced four large outbreaks (total positives greater than 500), six modium sized outbreaks (total positives greater than 100 and less than
15	six medium-sized outbreaks (total positives greater than 100 and less than 500), and fourteen small outbreaks (total positives between 1 and 99). The goal of this analysis and its associated methodology is to ensure to the
16	extent reasonably feasible that each institution has enough beds to handle the beginning phases of an outbreak in order to significantly reduce the risk
17	of it blossoming into a medium-sized or large outbreak.
18	Id.
19 20	The Court finds that at this time there is no disagreement among public health
20 21	experts that separating individuals through the use of quarantine and isolation is essential
21	to managing an outbreak. The Receiver's methodology applies the distancing principle
23	to the prison environment in a sound and sensible manner and should be implemented.
24	No party has put forth a competing proposal despite several months of litigation. As the
25	2
26	[PROPOSED] ORDER REGARDING ISOLATION AND QUARANTINE SPACE Plata v. Newsom, No. C01-1351 JST

1	Court has already ruled, in this situation "every day counts." Order to Show Cause re
2	Baseline Staff Testing for COVID-19, ECF No. 3366, June 28, 2020, at 3. Therefore, the
3	Court will order Defendants to implement the guidelines set forth in Receiver's statement
4	as set forth below. As experience with the virus and advances in treatment and
5	prevention occur, modifications of the methodology should be considered. Accordingly,
6	IT IS HEREBY ORDERED that:
7 8	(1) Defendants, their agents and employees (collectively "Defendants") shall identify within 10 days in each facility in each prison space that will allow for
9	rapid isolation and quarantine of impacted patients. Each facility shall also identify its largest congregate living space.
10	(2) Defendants shall take immediate steps to ensure that each facility shall
11	maintain empty beds equivalent to the capacity of its largest congregate living space or 20% of the current population of the facility, whichever is larger.
12	Priority shall be given to those prisons where the population is at highest risk, as determined by the Receiver.
13 14	(3) Defendants shall within fifteen days run "table-top" exercises at each facility to determine whether the space needs at each facility should be adjusted.
15	(4) The Receiver shall consider on an expedited basis, with input from counsel,
16	any request by either party to modify the number of empty beds as set forth above based on the results of the "table-top exercise," the architecture of the
17	prison, the classification factors, the availability of alternative housing arrangements, the healthcare needs of the population, accommodations
18	necessary for people with disabilities or any other factors that are relevant to determining the minimum space requirements necessary to ensure reasonable
19	safety.
20	(5) The Receiver shall continually evaluate the methodology set forth in his statement in light of experience as well as advances in medical science in
21	treatment and prevention. If the Receiver determines that the methodology should be adjusted he shall consult with the parties to determine whether an
22	agreement can be reached. If so, the parties shall file a stipulation modifying
23	this order. If not, the Receiver shall so inform the Court that the parties have been unable to agree.
24	3
25	[PROPOSED] ORDER REGARDING ISOLATION AND QUARANTINE SPACE
26	PLATA V. NEWSOM, NO. C01-1351 JST

1

2 The Court finds that this Order is narrowly drawn, extends no further than
3 necessary to correct the violation of the Federal right, and is the least intrusive means
5 necessary to correct the violation of the Federal right.

